Библиотека Рефераты Курсовые Дипломы Поиск
Библиотека Рефераты Курсовые Дипломы Поиск
сделать стартовой добавить в избранное
Кефирный гриб на сайте za4eti.ru

Физика Физика

Оптика

Брелок LED "Лампочка" классическая.
Брелок работает в двух автоматических режимах и горит в разных цветовых гаммах. Материал: металл, акрил. Для работы нужны 3 батарейки
131 руб
Раздел: Металлические брелоки
Коврик для запекания, силиконовый "Пекарь".
Коврик "Пекарь", сделанный из силикона, поможет Вам готовить вкусную и красивую выпечку. Благодаря материалу коврика, выпечка не
202 руб
Раздел: Коврики силиконовые для выпечки
Ночник-проектор "Звездное небо и планеты", фиолетовый.
Оригинальный светильник - ночник - проектор. Корпус поворачивается от руки. Источник света: 1) Лампочка (от карманных фонариков) 2) Три
330 руб
Раздел: Ночники

Оптика Работу выполнила Балтина Елена, 9 «А» класс Министерство общего и профессионального образования Свердловской обл. Управление и образование Орджоникидзевского района. МОУ СОШ №100 Екатеринбург 2005г. Введение: Оптикой называется раздел физики, занимающийся изучением природы света, закономерностей его испускания, распространения и взаимодействия с веществом. Я решила написать проект по теме «Оптика», потому что в настоящее время оптика нашла свое применение во многих вопросах науки, техники и человеческой деятельности. Геометрическая оптика §1. Экспериментальные законы. Оптика изучает излучение, распространение и взаимодействие с веществом большого диапазона электромагнитных волн – от миллиметровых радиоволн до жесткого γ-излучения. К понятию об электромагнитной природе света люди подошли только в XIX в. Первоначально в оптике изучался видимый свет, испускаемый источниками света, - химическими, биологическими, физическими. К физическим источникам относятся раскаленные тела и люминесцентные источники холодного света. Другие тела отражают свет и потому видимы. В оптике используются различные световые пучки – сходящиеся или расходящиеся. Достаточно узкий световой пучок, слабо сходящийся или расходящийся, назовем лучом света. Устройство, с помощью которого преобразуются лучи, представляет собой оптическую систему. Источник лучей (собственных или отраженных) – предмет. Лучи, идущие от предмета к системе, - входящие. После преобразования в системе получаются лучи выходящие. Оптическая система называется идеальной, если каждому входящему в нее лучу соответствует один выходящий. При этом все входящие лучи, идущие от одной точки, пересекаются (или расходятся так, что пересекаются их продолжения), выходя из системы, в одной точке. Эта точка пересечения – изображение данной точки. Для построения изображения точки в идеальной системе достаточно построить любые два луча, идущие от этой точки. Точка пересечения выходящих лучей, соответствующих этим двум падающим, будет искомым изображением данной точки. Лучи, выходящие из оптической системы, могут быть сходящимися или расходящимися. В первом случае они пересекутся в точке действительного изображения. Во втором – точка пересечения продолжений выходящих лучей будет мнимым изображением. Изображение предмета в идеальной системе представляет собой совокупность изображений его точек. Это точечное изображение. Изучая окружающий мир, человечество накопило большое количество экспериментальных сведений о свете. Отражение и прямолинейность распространения света были известны около двух тысяч лет назад. В начале XVII в. были сформулированы законы преломления. Все это составляет предмет геометрической оптики. Закон обратимости световых лучей. Пусть на какую-либо идеальную оптическую систему падает луч А и выходит из нее соответствующий ему луч В. Если пустить новый падающий луч навстречу В, получим новый выходящий из системы луч, идущий навстречу А. Закон прямолинейности распространения света. В однородной среде свет распространяется прямолинейно. Мы воспринимаем источник света или предмет, от которого упал отраженный свет, на продолжении лучей, попавших в глаз.

Этим законом объясняется образование геометрической тени, фотографирование камерой-обскурой (безлинзовой камерой с маленьким отверстием). Рис.1. Законы отражения. Границей двух сред назовем поверхность, разделяющую две однородные среды (I и II, рис.1). Луч света, идущий к границе в среде I (которая является первой именно потому, что из нее на границу падает луч), называется падающим (а). Луч, остающийся в среде I после взаимодействия с границей в точке падения А, - отраженный (в).  Угол i между лучом падающим и перпендикуляром, восстановленным к границе двух сред в точке падения, - угол падения. Угол j между лучом отраженным и перпендикуляром к границе двух сред в точке падения – угол отражения. Плоскость, в которой лежат луч падающий и перпендикуляр к границе двух сред в точке падения, - это плоскость падения. 1. Луч падающий, перпендикуляр к границе двух сред в точке падения и луч отраженный лежат в одной плоскости. То, что две из перечисленных прямых лежат в одной плоскости, - не закон, так как любые две пересекающиеся прямые удовлетворяют этому геометрическому положению. Физическим содержанием закона является нахождение третьей прямой и той же плоскости. Следовательно, углы падения и отражения лежат в плоскости падения. 2. Угол падения равен углу отражения (изменяя произвольно угол падения, получаем такое же изменение угла отражения): i=j. (1) Различают отражения зеркальное и диффузное. Зеркальным называется отражение, при котором падающий на поверхность параллельный пучок лучей света остается параллельным (рис.2). Диффузным называется отражение, при котором падающий параллельный пучок рассеивается (рис.3). Соответственно различают зеркальные (достаточно гладкие) и матовые (рассеивающие) поверхности. Это относительные понятия. Одна поверхность может быть зеркальной и матовой для разных излучений. Даже для одного излучения матовая поверхность может стать зеркальной, если увеличить угол падения.   Рис.2. Рис.3. Законы преломления. На границе двух сред кроме отражения наблюдается преломление – явление, состоящее в том, что луч частично проходит во вторую среду, изменяя свое первоначальное направление. Этот луч называется преломленным (d, рис.1). Угол r между лучом преломленным и перпендикуляром к границе двух сред в точке падения называется углом преломления. 1. Луч падающий, перпендикуляр к границе двух сред в точке падения и преломленный луч лежат в одной плоскости (аналогично первому закону отражения, смысл этого закона в том, что третья из перечисленных прямых попала в плоскость, положение которой определяют первые две. Это плоскость падения). 2. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данной пары сред (то есть не изменяется при произвольном изменении угла падения и соответственном изменении угла преломления). Эта постоянная называется показателем преломления ( 21) второй среды относительно первой: 21=si i / si r. (2) Показатель преломления какой-либо среды относительно вакуума называется абсолютным показателем преломления . Пустим падающий на границу луч вдоль d (рис.1

), преломленный луч по закону обратимости пойдет в среде I вдоль направления a. Значит (если не изменять обозначений углов), si r / si i= 12=1/ 21. (3) Показатели преломления первой среды относительно второй и второй среды относительно первой – обратные величины. Если угол падения больше угла преломления, то вторая среда называется оптически более плотной, чем первая, и наоборот. Это определение относительно, если вторая среда оптически более плотная, чем первая, то первая среда оптически менее плотна, чем вторая. При переходе в более оптически плотную среду луч отклоняется от первоначального направления к основанию перпендикуляра, синус угла падения больше синуса угла преломления, и показатель преломления больше единицы. При переходе в оптически менее плотную среду, наоборот, показатель преломления меньше единицы. §2. Плоское зеркало. Рассмотрим два каких-либо луча, падающих от источника S в произвольные точки А и В плоского зеркала (рис.4). Отраженные лучи, построенные в соответствии с формулой (1), расходятся, их продолжения пересекутся в точке S1, которая будет мнимым изображением источника S (если в ней пересекутся продолжения и всех остальных отраженных лучей!).  Рис.4. Рис.5. Треугольники SAB и S1AB имеют общую сторону АВ и равные пары углов А и В [отмеченные дугой углы при точке А равны по формуле (1) и как вертикальные, аналогично равны отмеченные двумя дугами углы при точке В. Но каждый угол А в наших треугольниках равен прямому плюс один из отмеченных, значит, они раны друг другу; каждый угол В равен прямому минус отмеченные, значит, они тоже равны между собой]. Такие треугольники равны, следовательно, равны их сходственные элементы, в частности высоты, перпендикулярные зеркалу. Следовательно, для любых треугольников SAB соответствующей высотой являются перпендикуляр к зеркалу, равный расстоянию SC, и любые лучи отразятся от зеркала так, что их продолжения пройдут через точку S1, которая и будет изображением точки S. Зеркально симметричной точкой S1 (относительно плоскости АВ) называется точка, лежащая на перпендикуляре к плоскости, опущенном из точки S на таком же расстоянии от нее: SC = S1C . Построим изображение предмета (треугольника АВС, рис.5) в плоском зеркале. Лучи теперь можно не строить, мы знаем, что изображением каждой точки в зеркале будет зеркально симметричная точка. Изображение А1В1С1 мнимое (пересекаются продолжения лучей, нельзя получить изображение на экране, помещенное за зеркалом), прямое, равное, но зеркально симметричное (т.е. отражение левой стороны предмета являются правой стороной изображения и т. п.). Чтобы убедиться в этом, достаточно представить движение автомобилей, едущих навстречу друг другу по правой (для себя!) стороне дороги. Посмотрите в зеркало и убедитесь, что часы у вашего изображения на правой руке и т. д. Отпечаток текста на промокательной бумаге читается с трудом – там буквы «наоборот». В зеркале изображение еще раз переворачивается и читается легко. §3. Сферические зеркала. Из всех неплоских зеркал мы рассмотрим только сферические, отражающая поверхность которых представляет собой внешнюю или внутреннюю часть сферы.

Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронных звезд ~ 2.1017 кг/м3, средний радиус 20 км, масса М"2М$. Нейтронные звезды были обнаружены по их импульсному радиоизлучению (см. Пульсары). НЕЙТРОННАЯ ОПТИКА - раздел ядерной физики, изучающий взаимодействие медленных нейтронов с веществом в условиях, когда отчетливо проявляются волновые свойства нейтронов: дифракция, поляризация и др. НЕЙТРОН-НЕЙТРОННЫЙ КАРОТАЖ - исследование интенсивности вторичного излучения, возникающего при облучении нейтронами горных пород в буровой скважине. Используется для выделения в разрезе водосодержащих и нефтесодержащих пород. НЕЙТРОННЫЕ ИСТОЧНИКИ - устройства, в которых идут ядерные реакции с образованием нейтронов. Наряду с ампульными источниками (в запаянной ампуле смесь ?-активного нуклида с 9Ве + ? = 12С + n) нейтронными источниками служат ускорители заряженных частиц и ядерные реакторы. НЕЙТРОНОГРАФИЯ - совокупность методов исследования вещества с помощью рассеяния нейтронов низких энергий (e " 1 эВ)

1. Оптико-электронные приборы и их применение

2. Оптико-электронные системы

3. Оптика глаза

4. Введение основных понятий в оптику

5. Этюды о занимательной оптике

6. Проектирование основных составляющих процесса управления по функциям: планирование, организация, мотивация и контроль для фирмы "Оптика"
7. Революция в оптике (лазеры и их применения)
8. Доклад по волоконной оптике

9. Нелинейная оптика

10. Лекции по оптике

11. Лекции по Физической оптике

12. Первые шаги астрономической оптики

13. Работы по атмосферной оптике во время полных солнечных затмений

14. Методы и средства цифровой коррекции изображения в оптико-электронных системах визуализации

15. Проектирование круглосуточной оптико-телевизионной системы

16. Общие сведения о технологическом процессе сборки оптико-электронных приборов. Контрольно-юстировочные приборы

Набор из скатерти и салфеток "Botanica", 140x180/42x42 см.
В набор входит скатерть и 6 салфеток "Botanica" 140x180/42x42 см. Салфетки, изготовленные из экологически чистого материала,
961 руб
Раздел: Салфетки сервировочные из ткани
Звуковой планшет "Транспорт".
Звуковой планшет - прекрасный подарок ребёнку! Он удобен и прост в использовании, подходит как для самостоятельного изучения, так и с
313 руб
Раздел: Планшеты и компьютеры
Мыло-пенка "Pigeon" для младенцев (сменная упаковка), 400 мл.
Мыло-пенка "Pigeon" разработано специально для мытья малыша с рождения. Низкий уровень кислотности такой же, как у нежной кожи
494 руб
Раздел: Гели, мыло

17. Психолого-педагогічні аспекти комп’ютерного моделювання при вивченні розділу "Геометричної оптики"

18. Формування знань учнів з розділу "Оптика"

19. Геометрическая и физическая оптика

20. Геометрическая оптика и квантовые свойства света

21. Исследование допробойных оптико-акустических эффектов в экспериментах с аэрозольными средами

22. Методика изучения квантовой оптики в базовой и профильной школах
23. Оптика
24. Нелинейная оптика


Поиск Рефератов на сайте za4eti.ru Вы студент, и у Вас нет времени на выполнение письменных работ (рефератов, курсовых и дипломов)? Мы сможем Вам в этом помочь. Возможно, Вам подойдет что-то из ПЕРЕЧНЯ ПРЕДМЕТОВ И ДИСЦИПЛИН, ПО КОТОРЫМ ВЫПОЛНЯЮТСЯ РЕФЕРАТЫ, КУРСОВЫЕ И ДИПЛОМНЫЕ РАБОТЫ. 
Вы можете поискать нужную Вам работу в КОЛЛЕКЦИИ ГОТОВЫХ РЕФЕРАТОВ, КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ, выполненных преподавателями московских ВУЗов за период более чем 10-летней работы. Эти работы Вы можете бесплатно СКАЧАТЬ.