Библиотека Рефераты Курсовые Дипломы Поиск
Библиотека Рефераты Курсовые Дипломы Поиск
сделать стартовой добавить в избранное
Кефирный гриб на сайте za4eti.ru

Математика Математика

Топологические пространства

Совок большой.
Длина 21,5 см. Расцветка в ассортименте, без возможности выбора.
24 руб
Раздел: Совки
Чашка "Неваляшка".
Ваши дети во время приёма пищи вечно проливают что-то на ковёр и пол, пачкают руки, а Вы потом тратите уйму времени на выведение пятен с
279 руб
Раздел: Тарелки
Забавная пачка денег "100 долларов".
Купюры в пачке выглядят совсем как настоящие, к тому же и банковской лентой перехвачены... Но вглядитесь внимательней, и Вы увидите
60 руб
Раздел: Прочее

Современная гуманитарная академия Реферат по предмету «Алгебра и геометрия» на тему: «Топологические пространства» Выполнил: Макриденков С.А. гр. ОИН-309-02 Смоленск 2004 Содержание Введение 3 Основные этапы развития топологии 5 Определение топологического пространства 7 Задачи топологии 10 Виды топологии 12 Введение Любой человек, изучавший начала математического анализа, понимает важность понятия непрерывности функции. Немного упрощая ситуацию, можно сказать, что непрерывность числовой функции - это математическая формализация следующего свойства: график этой функции можно нарисовать на листе бумаги, не отрывая карандаша, то есть график нигде не разрывается. Числовая функция есть частный случай более общего понятия отображения, которое определяется уже не для чисел, а для элементов произвольных множеств. Возникает вопрос, можно ли определить понятие непрерывности отображений на множествах. Оказывается, для того чтобы корректно ввести это понятие, необходимо задать на множествах дополнительную структуру, так называемую топологию; множество с указанной структурой называется топологическим пространством. Математическая дисциплина, изучающая указанные выше понятия (и не только их), тоже называется топологией. Топологическое пространство — основной объект изучения топологии. Понятие топологического пространства можно рассматривать как обобщение понятия геометрической фигуры, в котором мы отвлекаемся от свойств наподобие размера или точного положения частей фигуры в пространстве, и сосредотачиваемся только на взаимном расположении частей. Топологические пространства возникают естественно почти во всех разделах математики. Определение. Пусть дано множество X. Множество его подмножеств называется топологией на X, если выполнены следующие свойства: - Все X и пустое множество принадлежат , - Объединение произвольного семейства множеств, принадлежащих , принадлежит , - Пересечение двух множеств, принадлежащих , принадлежит . Множество X вместе с заданной на нем топологией называется топологическим пространством. Подмножества X, принадлежащие , называются открытыми множествами Способы задания топологии. Не всегда удобно перечислять все открытые множества. Часто удобнее указать некоторый меньший набор открытых множеств, который порождает их все. Формализацией этого является понятие базы топологии: множество B открытых подмножеств топологического пространства (X, ) называется базой топологии , если всякое открытое множество представляется как объединение множеств из B. Еще более экономный способ задания топологии состоит в задании ее предбазы — множества, которое становится базой, если к нему прибавить произвольные конечные пересечения его элементов. Топологию можно также задать описав множество Q всех замкнутых множеств (т.е. всех дополнений к открытым множествам). Примеры. Вещественная прямая R является топологическим пространством, если назвать открытыми множествами произвольные (пустые, конечные или бесконечные) объединения конечных или бесконечных интервалов. Множество всех конечных интервалов {(a, b) a, b из R } является базой этой топологии.

Вообще, евклидовы пространства R являются топологическими пространствами. Базой топологии можно выбрать открытые шары или открытые кубы. Обобщая далее, всякое метрическое пространство является топологическим пространством, базу топологии которого составляют открытые шары. В эту категорию попадают изучаемые в функциональном анализе бесконечномерные пространства функций. Рассмотрим множество С(X, Y) непрерывных отображений топологического пространства X в топологическое пространство Y. Оно является топологическим пространством относительно следующей топологии, которая называется компактно-открытой. Ее предбазу составляют множества C(U, K), состоящие из отображений, при которых обаз компакта K в X лежит в открытом множестве U в Y. Произвольное множество X можно сделать топологическим пространством, если называть открытыми все его подмножества. Такая топология называется дискретной. Непрерывные отображения. Понятие топологии является минимально необходимым для того, чтобы говорить о непрерывных отображениях. Интуитивно непрерывность есть отсутствие разрывов, то есть близкие точки при непрерывном отображении должны переходить в близкие. Оказывается, для определения понятия близости точек можно обойтись без понятия расстояния. Именно это и есть топологическое определение непрерывного отображения. Отображение топологических пространств f: (X, X) > (Y, Y) называется непрерывным, если прообраз всякого открытого множества открыт. Категория op всех топологических пространств, морфизмы которой — непрерывные отображения, является одной из важнейших категорий в математике. Попыткам классифицировать объекты этой категории при помощи инвариантов посвящен раздел математической науки, который называется алгебраической топологией. Изучению понятий непрерывности, а также других понятий, таких как компактность или отделимость, как таковых, без обращения к другим инструментам, посвящена общая топология. Основные этапы развития топологии Отдельные результаты топологического характера были получены ещё в 18—19 вв. (теорема Эйлера о выпуклых многогранниках, классификация поверхностей и теорема Жордана о том, что лежащая в плоскости простая замкнутая линия разбивает плоскость на две части). В начале 20 в. создаётся общее понятие пространства в Т. (метрическое — М. Фреше, топологическое — Ф. Хаусдорф), возникают первоначальные идеи теории размерности и доказываются простейшие теоремы о непрерывных отображениях (А. Лебег, Л. Брауэр), вводятся полиэдры (А. Пуанкаре) и определяются их так называемые числа Бетти. Первая четверть 20 в. завершается расцветом общей Т. и созданием московской топологической школы; закладываются основы общей теории размерности (П. С. Урысон); аксиоматике топологических пространств придаётся её современный вид (П. С. Александров); строится теория компактных пространств (Александров, Урысон) и доказывается теорема об их произведении (А. Н. Тихонов); впервые даются необходимые и достаточные условия метризуемости пространства (Александров, Урысон); вводится (Александров) понятие локально конечного покрытия [на основе которого в 1944 Ж.

Дьёдонне (Франция) определил паракомпактные пространства]; вводятся вполне регулярные пространства (Тихонов); определяется понятие нерва и тем самым основывается общая теория гомологий (Александров). Под влиянием Э. Нётер числа Бетти осознаются как ранги групп гомологий, которые поэтому называются также группами Бетти. Л. С. Понтрягин, основываясь на своей теории характеров, доказывает законы двойственности для замкнутых множеств. Во 2-й четверти 20 в. продолжается развитие общей Т. и теории гомологий: в развитие идей Тихонова А. Стоун (США) и Э. Чех вводят так называемое стоун — чеховское, или максимальное, (би)компактное расширение вполне регулярного пространства; определяются группы гомологий произвольных пространств (Чех), в группы когомологий (Дж. Александер, А. Н. Колмогоров) вводится умножение и строится кольцо когомологий. В это время в алгебраической Т. царят комбинаторные методы, основывающиеся на рассмотрении симплициальных схем; поэтому алгебраическая Т. иногда и до сих пор называется комбинаторной Т. Вводятся пространства близости и равномерные пространства. Начинает интенсивно развиваться теория гомотопий (Х. Хопф, Понтрягин); определяются гомотопические группы (В. Гуревич, США) и для их вычисления применяются соображения гладкой Т. (Понтрягин). Формулируются аксиомы групп гомологий и когомологий (Н. Стинрод и С. Эйленберг, США). Возникает теория расслоений (Х. Уитни, США; Понтрягин); вводятся клеточные пространства (Дж. Уайтхед, Великобритания). Во 2-й половине 20 в. в СССР складывается советская школа общей Т. и теории гомологий: ведутся работы по теории размерности, проблеме метризации, теории (би)компактных расширений, общей теории непрерывных отображений (факторных, открытых, замкнутых), в частности теории абсолютов; теории так называемых кардинальнозначных инвариантов (А.В. Архангельский, Б. А. Пасынков, В. И. Пономарев, Е. Г. Скляренко, Ю. М. Смирнов и др.). Усилиями ряда учёных (Ж. П. Серр и А. Картан во Франции, М. М. Постников в СССР, Уайтхед и др.) окончательно складывается теория гомотопий. В это время создаются крупные центры алгебраической Т. в США, Великобритании и др. странах; возобновляется интерес к геометрической Т. Создаётся теория векторных расслоений и К-функтора (М. Атья, Великобритания; Ф. Хирцебрух, ФРГ), алгебраическая Т. получает широкие применения в гладкой Т. (Р. Том, Франция) и алгебраической геометрии (Хирцебрух); развивается теория (ко)бордизмов (В. А. Рохлин, СССР; Том, С. П. Новиков) и теория сглаживания и триангулируемости (Дж. Милнор, США). Развитие Т. продолжается во всех направлениях, а сфера её приложений непрерывно расширяется. Определение топологического пространства Напомним классическое определение непрерывности числовой функции f в точке x, восходящее к Коши. Определение 1. Функция f называется непрерывной в точке x, если для любого e > 0 существует d = d(e) > 0, такое, что если для точки x' выполнено неравенство x - x' < d, то f (x) - f (x') < e. Введенное выше определение допускает модификацию, удобную для дальнейшего изложения. Определение 1'. Функция f называется непрерывной в точке x, если для любой окрестности U точки f (x) существует окрестность V точки x, такая, что из того, что точка x' принадлежит V, следует, что f (x') принадлежит U.

Впадает в Гвинейский залив у г. Гран-Басам. Питание дождевое. Максимальные уровни в сентябре—октябре, наиболее низкий уровень в феврале. Средний годовой расход в нижнем течении 430 м 3 /сек. Судоходна в нижнем течении. Компакт Компа'кт (от лат. compactus — плотный) (математическое), компактное метрическое пространство, в частности любое компактное в себе множество евклидова пространства любого числа измерений. См. Компактность (математическое). Компактность Компа'ктность (математическое), важное свойство множеств; множество называется компактным, если каждая бесконечная последовательность его элементов (точек) имеет хотя бы одну предельную точку . От К. по отношению к объемлющему пространству отличают К. в себе: множество (лежащее в определенном топологическом пространстве или являющееся само топологическим пространством) компактно в себе, если каждая бесконечная последовательность его элементов имеет хотя бы одну предельную точку, принадлежащую тому же множеству.   В математическом анализе большое значение имеет принцип Вейерштрасса, утверждающий, что каждое ограниченное множество действительных чисел — компактно

1. Гипотеза рождения вселенной из флуктуации в напряженной метрике пространства

2. Движение в пространстве, пространство движения и геометрический образ движения: опыт топологического подхода

3. Международное сотрудничество в освоении космического пространства

4. Этих дней не смолкнет слава!

5. Россия. 21 век. Начало строительства (инфраструктурный комплекс как фактор организации экономического пространства России)

6. Экономическая сказка-реферат "НДС - вражья морда" или просто "Сказка про НДС"
7. Нормы ГК, которые определяют особенности порядка заключения договоров по недвижимости
8. Реферат о Пугачеве

9. Создание Единого экономического пространства

10. Действие закона во времени, в пространстве, по кругу лиц

11. Пространство и время как факторы специфики культуры

12. Несколько рефератов по культурологии

13. Что стало бы с литературой, если бы не было музыки

14. Быть или не быть книге (интернет против книг)

15. Лермонтов во многом еще не открыт. Он – до сих пор тайна…

16. "...Мне не стало хватать его..." (о творчестве В.С. Высоцкого)

Набор универсальных прозрачных обложек для контурных карт, 120 мкм, 292x560 мм, 20 штук.
Материал: ПВХ. Плотность: 120 мкм. Размер: 292х560 мм. В наборе: 20 штук. Цвет: прозрачный.
427 руб
Раздел: Обложки для книг
Кармашек в шкафчик Антей "Бабочки", 25х60 см.
Ваш малыш вырос и ходит в детский сад! Его вещи будут всегда на своем месте в шкафчике в детском саду, если у него есть "Кармашек в
603 руб -9% 548 руб
Раздел: Карманы на детскую кроватку
Кружка-заварник для чая, 500 мл (арт. PGL-245001 Coloriva).
Кружка-заварник для чая 500 мл Pomi d'Oro, модель PGL-245001, коллекция Coloriva. Кружка-заварник для чая состоит из: кружки с
488 руб
Раздел: Кружки

17. Реферат по научной монографии А.Н. Троицкого «Александр I и Наполеон» Москва, «Высшая школа»1994 г.

18. Д.И.Менделеев: не наукой единой

19. Ялтинская конференция 1945 года и обсуждение на ней вопроса о зонах оккупации Германии и управлении большим Берлином

20. Разработка схемы топологии локальной корпоративной сети, описание ее технических характеристик и решаемых задач

21. Быть или не быть книге (интернет против книг)

22. Чего не может компьютер, или Труднорешаемые задачи
23. Топология как отражение культуры и жизнедеятельности
24. Бронхиальная астма и лечебная физкультура при ней

25. Субъект преступления ("подновлённая" версия реферата 6762)

26. Действие уголовного закона в пространстве и времени

27. Реферат по технологии приготовления пищи "Венгерская кухня"

28. Определить капитальные затраты и эксплуатационные расходы по тепловой сети (при следующих условиях)

29. Роль транспорта в организации экономического пространства России

30. Психология труда (Обзорный реферат по психологии труда)

31. Физико-топологическое моделирование структур элементов БИС

32. Расчет топологии толстопленочной микросхемы

Кружка-хамелеон "Кран с монетками".
Хотите по-настоящему регулировать денежные потоки? Налейте в чашку-хамелеон горячий напиток, и из крана на рисунке «польются» золотые
390 руб
Раздел: Кружки
Пластиковый кварцевый будильник.
Пластиковый кварцевый будильник. В качестве элемента питания используется 1 батарейка типа АА (не входит в комплект).
399 руб
Раздел: Будильники
Доска магнитно-маркерная.
Доска с лакированной поверхностью позволяет размещать презентационную информацию как с помощью магнитов, так и с помощью маркеров. Изящная
2787 руб
Раздел: Доски магнитно-маркерные

33. Несколько рефератов по Исламу

34. "Русский Тарзан" (реферат о российском пловце Александре Попове)

35. Пространство и время

36. Пространство и время

37. Время и пространство в философии

38. Пространство и время
39. Пространство и время
40. Создание Единого экономического пространства

41. Структура организации, влияние на нее законов теории организации

42. Генезис капитализма в Мексике. Реферат по истории экономики

43. Сущность рыночной экономики. Пути к ней России

44. Почему в России не уважают законы

45. К вопросу о влиянии открытого пространства-времени на исторический процесс

46. Реалии открытого пространства-времени: к пониманию нашей исторической системы

47. Чужого горя не бывает

48. ОАО ГАЗ не только автомобили

Увлекательная настольная игра "Фрукто 10".
Настольная игра "Фрукто-10" - это напряжённое соревнование в математической зоркости и арифметической скорости, которое
490 руб
Раздел: Математика, цифры, счет
Подушка для кормления Globex "Няня".
Подушка выполнена с учетом анатомических особенностей. Наклонная подушка может располагаться как с левой, так и с правой стороны. Чехол
754 руб
Раздел: Подушки для кормления
Табурет складной (универсальный).
Материал: полипропилен. Размер: 330x290x290 мм. Максимальная нагрузка: 100 кг.
486 руб
Раздел: Стульчики

49. Христианство - не значит пацифизм

50. Знаете ли вы историю... Или почему мы не учимся на чужих ошибках?

51. Военно-народное управление на Северном Кавказе (Дагестан): мусульманская периферия в российском имперском пространстве

52. Исторический опыт межэтнических отношений на евразийском пространстве

53. Североафриканская кампания во второй мировой войне и роль в ней фельдмаршала Эрвина Роммеля

54. В списках не значился. Васильев Б.Л.
55. Трое в лодке, не считая собаки. Джером К. Джером
56. Ханс Кристиан Браннер. Никто не знает ночи

57. Полуфабрикаты из рыбы и блюда из нее

58. Япония: Закат которого не было

59. Эстетика «Не-Х»

60. Дев на борт не бери…

61. "Не только самурай и гейша"

62. Особенности тематического пространства Новгород-псковского культурного региона и его разрушение в ходе московского завоевания

63. Христианизация ментального пространства культуры как "переоценка всех ценностей"

64. Экзистенциальный” и “рефлексивный” типы функционирования ментального пространства культуры

Набор для уборки Vileda "Ultramat": швабра со сборной ручкой+ведро с отжимом.
Набор предназначен для влажной уборки всех типов напольных покрытий. Швабра отжимается в специальной воронке на ведре, благодаря чему руки
1590 руб
Раздел: Швабры и наборы
Форма для запекания, 26 см, круглая, с крышкой (арт. QL2601 Dolcezza).
Форма для запекания Pomi d'Oro, 26 см, круглая с крышкой, модель QL2601, коллекция Dolcezza. Круглая форма подходит для
309 руб
Раздел: Формы для запекания
Папка для чертежей и рисунков, А2.
Толщина 1,3 мм. Расцветка в ассортименте, без возможности выбора. Цвет в ассортименте, без возможности выбора!
537 руб
Раздел: Папки для акварелей, рисования

65. Пространство

66. Реферат по книге Н. Цеда Дух самурая - дух Японии

67. Мне видеть не дано, быть может...

68. "Ничто не проходит бесследно..." (по повести Чехова "Моя жизнь")

69. Будьте не мертвые, а живые души. О названии поэмы Гоголя

70. Художественное пространство "Страшной мести" Н. Гоголя
71. «Настоящую нежность не спутаешь...» (любовь в лирике А. А. Ахматовой)
72. “Сказка ложь, да в ней намек!..” (А.С. Пушкин)

73. Согласны ли вы с А. С. Пушкиным в том, что “России определено было высшее назначение”?

74. "Мы живем, под собою не чуя страны..."

75. "Что же такое жизнь, как не машина, которую приводят в движение деньги?"

76. В чём не сомневался Николай Ростов

77. Пространство и время в произведениях Ф.М.Достоевского

78. "Без Ольги Ильинской и без ее драмы с Обломовым не узнать бы нам Ильи Ильича так, как мы его теперь знаем…"

79. Зося Норейко и Антон (по повести «Пойти и не вернуться»)

80. Принцип не совсем обманутых ожиданий

Игра настольная "Монополия".
Классическая версия самой популярной настольной игры в мире. Путешествуйте по городу в поисках самой прибыльной собственности. Вкладывайте
2030 руб
Раздел: Классические игры
Развивающая игрушка подвеска на бампер коляски "Собачка".
Игрушка создана для малышей возрастом от года и имеет развивающие функции. Она великолепно подойдет для любой коляски, в которой есть
500 руб
Раздел: Для колясок
Картридж струйный CANON (PG-445) PIXMA MG2440/PIXMA MG2540, чёрный.
Для цветной печати. Цвет чернил: черный Ресурс: 180 страниц при 5% заполнении. Оригинальный.
1431 руб
Раздел: Картриджи для струйных принтеров

81. Пространство поступков в лирике Лермонтова

82. "Рукописи не горят…"

83. И.А.Гончаров. Пути, которые не выбирал Обломов

84. Организация пространства в романе И. А. Гончарова "Обыкновенная история"

85. "Я любви искала и не нашла"

86. Семья в творчестве Островского и место женщины в ней
87. Проблема времени и пространства в романе М.Булгакова "Мастер и Маргарита"
88. Пространство и время в романе "И больше века длится день"

89. Сочинения на тему "Ни за что бы не подумал, что я..."

90. Быть может, в лете не потонет строфа, слагаемая мной

91. Почему не состарился до сих пор грибоедовский Чацкий, а с ним и вся комедия

92. Мы не знаем войны

93. Я лучшей доли не искал

94. Французская лирика в переводах Бенедикта Лифшица: метрика, строфика, ритмика, рифма

95. "Не верят в мире многие любви" (М. Ю. Лермонтов)

96. «Не все читали заревые знаки»: к проблеме самосознания А. Блока

Подгузники детские одноразовые Maneki "Fantasy", размер L (9-14 кг), 54 штуки.
Благодаря новейшей японской технологии подгузники Maneki отличаются повышенной впитываемостью и отличным удержанием влаги. Мягкие
1271 руб
Раздел: Более 11 кг
Шкатулка декоративная "Путешествие", 16x10x6 см.
Шкатулка декоративная, предназначена для ювелирных украшений. Материал: МДФ, комбинированные материалы. Размер: 16x10x6 см. В
348 руб -11% 309 руб
Раздел: Шкатулки для украшений
Кружка для чая "Тихий сад", 330 мл.
Диаметр: 12 см. Объем: 330 мл. Материал: фарфор. Мыть тёплой водой с применением нейтральных моющих средств.
683 руб -14% 587 руб
Раздел: Кружки

97. "Счастье не в счастье, а в его достижении..." Ф.М.Достоевский. (По одному из произведений русской литературы)

98. "Счастье не в счастье, а в его достижении..." Ф.М.Достоевский. (По произведениям русской литературы. — Б.Ш.Окуджава)

99. Камю А. - Тот, кто никого не любил


Поиск Рефератов на сайте za4eti.ru Вы студент, и у Вас нет времени на выполнение письменных работ (рефератов, курсовых и дипломов)? Мы сможем Вам в этом помочь. Возможно, Вам подойдет что-то из ПЕРЕЧНЯ ПРЕДМЕТОВ И ДИСЦИПЛИН, ПО КОТОРЫМ ВЫПОЛНЯЮТСЯ РЕФЕРАТЫ, КУРСОВЫЕ И ДИПЛОМНЫЕ РАБОТЫ. 
Вы можете поискать нужную Вам работу в КОЛЛЕКЦИИ ГОТОВЫХ РЕФЕРАТОВ, КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ, выполненных преподавателями московских ВУЗов за период более чем 10-летней работы. Эти работы Вы можете бесплатно СКАЧАТЬ.